ç§ã®äººçã®æ¯ãè¿ãããçŸåšã®ç ç©¶ã«ããããŸã§ã®éçšãæããã«ããŸãã
ããããã®å Žé¢ã§ãChatGPTããç»å ŽããŸãã
ä»åã®ã¢ããããŒãã§ã¯ãçŸç¶ãïŒ2025/09/23(ç«)ïŒãå ããŸããã
- ãçŸç¶ãïŒ2025/09/23(ç«)ïŒ
- ãçŸç¶ãïŒ2025/08/09(å)ïŒ
- ãçŸç¶ãïŒ2025/08/08(é)ïŒ
- ãä»åŸã®æ¹éãïŒ2025/07/21(æç¥)ïŒ
- ãä»åŸã®æ¹éãïŒ2025/03/31(æ)ïŒ
- ãä»ãŸã§ã®æ¯ãè¿ããšæ°ããªæéãç®æšã®èšå®ã«ã€ããŠã
- ãç§åŠè ãšããŠæåããã«ã¯ã
- ãèæ€åç©ã®èŠç©è³ªã®ã²ãã ã«é¢ããç ç©¶ã
- ãèŠç©è³ªéºäŒåã®æ£åŒåç§°ãšããããã®éºäŒåã®èª¬æã
- ãéºäŒåã®è§£ææ¹æ³ïŒããŒã¿ããŒã¹ã®å©çšïŒã
- ãåããŠã®BioPythonïŒäŸïŒã
- ãåèæç®ã»åèæžã»ä»ã
ãçŸç¶ãïŒ2025/09/23(ç«)ïŒ
çŸæç¹ã§çããçåãChatGPT5ã«ã¶ã€ããŠã¿ãŸããã
è²èŠç°åžžã®ç ç©¶ã«ã€ããŠ
ãçŸç¶ãïŒ2025/08/09(å)ïŒ
å¡©åºè§£åããŒã¿ããŒã¹ã«ã€ããŠã調ã¹ãŸããã
å¡©åºè§£åããŒã¿ããŒã¹
ãçŸç¶ãïŒ2025/08/08(é)ïŒ
ä»ãŸã§ã®èšäºã®äžã§çè§£ã§ããŠããªãã£ããã¢ã¯ã»ãã·ã§ã³çªå·ã«ã€ããŠèª¿ã¹ãã調ã¹ãäžã§åºãŠããKEGGã«ã€ããŠãèšåããã
ã¢ã¯ã»ãã·ã§ã³çªå·ãšKEGG
ãä»åŸã®æ¹éãïŒ2025/07/21(æç¥)ïŒ
èŸå
žã䜿ããªããåèæžãèªããçŸæç¹ã§èªåã«ã§ããããšãèããŠã¿ãã
èªåã«ã§ãããšæããããšã¯å®è·µããŠã¿ãã
ãçç©åŠã®ç¬åŠã»å匷ãµã€ã | Biologyãã蚪ããèªãã
ãä»åŸã®æ¹éãïŒ2025/03/31(æ)ïŒ
ã§ããã ãåæã®åèæç®ãèªãããšããå°éçšèªãåŠã¶ãçç©åŠèŸå
žã»çååŠèŸå
žã§æ€çŽ¢ããçšèªãžã®ç¥èŠãæ·±ããã
䞊è¡ããŠãè±æã®åèæç®ã«ãåãçµãã
çšèªè§£èª¬
ãä»ãŸã§ã®æ¯ãè¿ããšæ°ããªæéãç®æšã®èšå®ã«ã€ããŠã
ãä»ãŸã§ã®æ¯ãè¿ããšæ°ããªæéãç®æšã®èšå®ã«ã€ããŠã
Reflecting on the past and setting new guidelines and goals
ç§ã¯æ©ãã§ããŸãããççŽã«ChatGPTã«ããã³ãããæããŠã¿ããçããåŸãããŸããã以äžã¯ãç§ãšChatGPTã®ãããšãã§ãã
Q.01ãçŸåšã50æ³ä»£ãªãã°ãéããŠãèªåã®äººçã«æ©ãã§ããŸããä»ãŸã§ç§ã¯äœãéæã§ããŠããªããšæãã®ã§ããããããã®äººçã®æéãæ±ããŠããŸããã©ããããããã§ããããïŒ
A.01ã人çã®äžã§èªåãäœãéæããããäœãç®æãã¹ããã«æ©ãããšã¯ãå€ãã®äººãçµéšããããšã§ããç¹ã«50æ³ä»£ãéãããšããããŸã§ã®çµéšãå®çžŸãæ¯ãè¿ãææãšããŠãèªå·±è©äŸ¡ãå³ãããªãããšããããŸããããã§ã¯ãããããã®äººçãè±ãã«ããããã®ããã€ãã®æéãææ¡ããŸãã
### 1. èªå·±è©äŸ¡ã®åå®çŸ©
ä»ãŸã§ã®äººçãæ¯ãè¿ãéã«ãèªåã®éæã«ã€ããŠèãçŽããŠã¿ãŸããããéæãšã¯å¿
ããã倧ããªæåãç®ã«èŠããææã ãã§ã¯ãããŸãããå®¶æãå人ãšã®é¢ä¿ãå¥åº·ãç¶æããããšãæ¥ã
ã®ä»äºãçæŽ»ã®äžã§ã®å°ããªæåãªã©ã倧åã§ããèªåã®çµéšãã¹ãã«ããªã¹ãã¢ããããŠã¿ãŠãæå€ãªéæãèŠã€ããããšãã§ãããããããŸããã
### 2. æ°ããç®æšãèšå®ãã
ããããã®äººçã«ãããŠäœãç®æãããå
·äœçãªç®æšãèšå®ããŠã¿ãŸããããæ°ããè¶£å³ãå§ããããã©ã³ãã£ã¢æŽ»åã«åå ãããæ°ããã¹ãã«ãåŠã¶ãªã©ãèªåãæé·ãããç®æšãèŠã€ããããšã倧åã§ããç®æšã¯å€§ããªãã®ã§ã¯ãªããŠãæ§ããŸãããå°ããªç®æšãèšå®ãããããéæããŠããããšã§èªå·±è¯å®æãé«ããããšãã§ããŸãã
### 3. æè¬ã®æ°æã¡ãæã€
æ¯æ¥ã®ç掻ã®äžã§æè¬ã®æ°æã¡ãæã€ããšãéèŠã§ããæ¥ã
ã®å°ããªåºæ¥äºã«æè¬ããããžãã£ããªèŠç¹ã§ç©äºãèŠãããã«åªããããšã§ãå¿ã®è±ãããæããããšãã§ããŸããæè¬ã®æ°æã¡ã¯ã¹ãã¬ã¹ã軜æžããå¹žçŠæãé«ãã广ããããŸãã
### 4. å¥åº·ã倧åã«ãã
å¿èº«ã®å¥åº·ã¯äººçãå
å®ãããããã®åºç€ã§ãã宿çãªéåããã©ã³ã¹ã®åããé£äºãååãªç¡ç ãå¿ãããå¥åº·ç®¡çã«åªããŸããããå¥åº·ãªäœãšå¿ãããã°ãæ°ããææŠã«ãç©æ¥µçã«åãçµãããšãã§ããŸãã
### 5. ã³ãã¥ããã£ãšã®ã€ãªããã匷åãã
å人ãå®¶æãå°åã®ã³ãã¥ããã£ãšã®ã€ãªããã倧åã«ããããšãéèŠã§ãã人ãšã®ã€ãªããã¯ã人çã«ãããŠå€§ããªæ¯ããšãªããŸããæ°ãã人ãšã®åºäŒãããæ¢åã®é¢ä¿ãæ·±ããããšã§ã人çã«æ°ããªåã³ãèŠã€ããããšãã§ããŸãã
### 6. å°éå®¶ã®å©ããåãã
ããèªå·±è©äŸ¡ã人çã®æéã«é¢ããŠæ·±å»ãªæ©ã¿ãããå Žåã¯ãã«ãŠã³ã»ã©ãŒãã³ãŒããªã©ã®å°éå®¶ã«çžè«ããããšãæå¹ã§ããå°éå®¶ã®ã¢ããã€ã¹ãåããããšã§ã客芳çãªèŠç¹ããèªåã®äººçãèŠçŽããæ°ããªéãèŠã€ããæå©ãã«ãªãã§ãããã
ãããã®æéãåèã«ãèªåã®ããŒã¹ã§ããããã®äººçãè±ãã«ããããã®ã¹ããããèžã¿åºããŠã¿ãŠãã ããã
Q.02ã2.ã®ç®æšèšå®ã«å°ã£ãŠããŸããç§ã¯éå»ã«éé¡ã®èŠèŠæ©èœãç ç©¶ããŠããŸããã修士課çšãä¿®äºããããšãå°±è·å ã«ITäŒæ¥ãéžã³ãŸãããããããITã®æä»£ã«ãªããšæã£ãããã§ããããããITæè¡è ãšããŠæ«æãããã®åŸã¯çŠç¥é¢ä¿ã«èå³ãæã¡ãŸãããä»ã®èªåã¯äœã®å°éå®¶ãããããªããªã£ãŠããŸã£ãã®ã§ããèªåã§ã¯èªåãäžäººã®ããã¬ãŒãšèªèããŠããŸãããæ å ±ãçºä¿¡ããäžã§ããäœãèªåã®åŒ·ã¿ã欲ããã§ãã
A.02ããããŸã§ã®çµéšãšèå³ã掻ãããæ°ããç®æšãèšå®ããæ¹æ³ã«ã€ããŠèããŠã¿ãŸãããã以äžã®ã¹ããããåèã«ãèªåã®åŒ·ã¿ã掻ãããç®æšãèŠã€ããããšãã§ãããããããŸããã
### 1. èªå·±åæãè¡ã
éå»ã®çµéšãšèå³ãæ¯ãè¿ããèªåãåŸæãªããšã奜ããªããšããªã¹ãã¢ããããŠã¿ãŸããããéé¡ã®èŠèŠæ©èœã®ç ç©¶ãITæè¡ãçŠç¥é¢ä¿ã®èå³ããããŠããã¬ãŒãšããŠã®æŽ»åãªã©ãããããã®çµéšããåŸãã¹ãã«ãç¥èãæŽçããããšã倧åã§ãã
### 2. èå³ãšåŒ·ã¿ã®äº€å·®ç¹ãæ¢ã
èªåã®èå³ãšåŒ·ã¿ã亀差ããåéãæ¢ããŠã¿ãŸããããäŸãã°ãéé¡ã®èŠèŠæ©èœãšITæè¡ãçµã¿åãããç§åŠçãªæ
å ±çºä¿¡ããçŠç¥åéã«ãããITã®æŽ»çšã«ã€ããŠã®ããã°èšäºãæžãããšãªã©ãèããããŸãã
### 3. ç®æšãå
·äœçã«èšå®ãã
å
·äœçã§éæå¯èœãªç®æšãèšå®ããããšãéèŠã§ãã以äžã«ããã€ãã®ç®æšäŸãæããŸãã
– **å°éç¥èãæŽ»ãããæ
å ±çºä¿¡**ïŒéé¡ã®èŠèŠæ©èœãçŠç¥é¢ä¿ã®æ
å ±ãçºä¿¡ããããã°èšäºãåç»ã宿çã«äœæããã
– **ITã¹ãã«ã®åäž**ïŒITæè¡ã®ååŠç¿ãè¡ããçŠç¥åéã§ã®IT掻çšã«é¢ãããããžã§ã¯ãã«åå ããã
– **æ°ããåŠã³**ïŒçŠç¥é¢ä¿ã®è³æ ŒååŸãé¢é£ãããªã³ã©ã€ã³ã³ãŒã¹ãåè¬ããã
– **ã³ãã¥ããã£ãšã®é£æº**ïŒåãèå³ãæã€äººã
ãšã³ãã¥ããã£ã圢æããæ
å ±äº€æãå
±åãããžã§ã¯ããè¡ãã
### 4. è¡åèšç»ãç«ãŠã
èšå®ããç®æšã«åããŠå
·äœçãªè¡åèšç»ãç«ãŠãŸããããäŸãã°ãæ¯é±1æ¬ã®ããã°èšäºãå·çãããæã«1åæ°ããITã¹ãã«ãåŠã¶ããã®ãªã³ã©ã€ã³ã³ãŒã¹ãåè¬ãããªã©ãå
·äœçãªã¹ããããèšç»ããŸãã
### 5. 宿çã«èŠçŽã
ç®æšãšè¡åèšç»ã¯å®æçã«èŠçŽããå¿
èŠã«å¿ããŠèª¿æŽããŸããããæ°ããèå³ãæ©äŒãèŠã€ãã£ãå Žåã«ã¯ãæè»ã«å¯Ÿå¿ããããšã倧åã§ãã
ãããã®ã¹ããããéããŠãèªåã®åŒ·ã¿ã掻ãããæ°ããç®æšãèšå®ããããã«åãã£ãŠå ·äœçãªè¡åãèµ·ããããšã§ãèªå·±è¯å®æãé«ããå å®ãã人çãç¯ãããšãã§ããã§ãããã
Q.03ãç§ã¯ãã€ãªã€ã³ãã©ããã£ã¯ã¹ã«ã€ããŠåŠã³ãæ å ±ãçºä¿¡ãããã§ãããç ç©¶ããããšãªããšãç ç©¶æ©é¢ã«å± ãªããŠã¯ç¡çãªãããªæ°ãããŸããç¬åŠã§ãã¹ãã«ã¢ããã§ããã§ããããïŒ
A.03ããã€ãªã€ã³ãã©ããã£ã¯ã¹ã¯ãITã¹ãã«ãšçç©åŠã®ç¥èãçµã¿åãããåŠååéã§ãããç¬åŠã§ãã¹ãã«ã¢ãããå¯èœã§ããçŸåšãå€ãã®ãªã³ã©ã€ã³ãªãœãŒã¹ãã³ãã¥ããã£ãååšããèªå·±åŠç¿ãæ¯æŽããŠããŸãã以äžã®ã¹ããããåèã«ããã€ãªã€ã³ãã©ããã£ã¯ã¹ãç¬åŠã§åŠã³ãæ å ±çºä¿¡ããããã®å ·äœçãªæ¹æ³ãèããŠã¿ãŸãããã
### 1. åºç€ç¥èã®ç¿åŸ
#### ãªã³ã©ã€ã³ã³ãŒã¹
– **Coursera**ïŒãã€ãªã€ã³ãã©ããã£ã¯ã¹ã«ç¹åããã³ãŒã¹ããããŸããç¹ã«ãUniversity of California San Diegoã®ãBioinformatics Specializationããæåã§ãã
– **edX**ïŒHarvardãMITãªã©ã®æå倧åŠãæäŸãããã€ãªã€ã³ãã©ããã£ã¯ã¹é¢é£ã®ã³ãŒã¹ããããŸãã
– **Udacity**ïŒããŒã¿ãµã€ãšã³ã¹ãšããã°ã©ãã³ã°ã®ã¹ãã«ã匷åããã³ãŒã¹ãããããã€ãªã€ã³ãã©ããã£ã¯ã¹ã«å¿çšã§ããŸãã
#### æžç±ãšææ
– **ãBioinformatics for Dummiesã**ïŒåå¿è
åãã®ãã€ãªã€ã³ãã©ããã£ã¯ã¹å
¥éæžã§ãã
– **ãPractical Bioinformaticsã**ïŒå®è·µçãªã¹ãã«ãåŠã¶ããã®æžç±ã§ãã
### 2. å®è·µçãªã¹ãã«ã®ç¿åŸ
#### ããã°ã©ãã³ã°
– **Python**ïŒãã€ãªã€ã³ãã©ããã£ã¯ã¹ã§åºã䜿ãããããã°ã©ãã³ã°èšèªã§ããPythonãåŠã¶ããã®ãªã³ã©ã€ã³ãªãœãŒã¹ïŒCodecademyãReal Pythonãªã©ïŒãå©çšããŸãããã
– **R**ïŒçµ±èšè§£æãããŒã¿å¯èŠåã«åŒ·ãèšèªã§ããã€ãªã€ã³ãã©ããã£ã¯ã¹ã§ãéèŠã§ããSwirlãDataCampã§åŠã¶ããšãã§ããŸãã
#### ããŒã«ãšãœãããŠã§ã¢
– **BLAST**ïŒéºäŒåãã¿ã³ãã¯è³ªã®é
åæ€çŽ¢ããŒã«ã§ãã
– **Bioconductor**ïŒRã§ãã€ãªã€ã³ãã©ããã£ã¯ã¹è§£æãè¡ãããã®ããã±ãŒãžã§ãã
– **Galaxy**ïŒãŠãŒã¶ãŒãã¬ã³ããªãŒãªãã€ãªã€ã³ãã©ããã£ã¯ã¹ããŒã«ãæäŸãããŠã§ãããŒã¹ã®ãã©ãããã©ãŒã ã§ãã
### 3. å®è·µçãªãããžã§ã¯ãã«åãçµã
– **ãªãŒãã³ããŒã¿ã®æŽ»çš**ïŒNCBIãEnsemblãªã©ã®ããŒã¿ããŒã¹ããå
¬éãããŠããããŒã¿ã䜿ã£ãŠãå®éã«è§£æãè¡ã£ãŠã¿ãŸãããã
– **GitHub**ïŒèªåã®ãããžã§ã¯ããGitHubã§å
¬éããä»ã®ç ç©¶è
ãšå
±æããããšã§ãã£ãŒãããã¯ãåŸãããšãã§ããŸãã
### 4. ã³ãã¥ããã£ã«åå ãã
– **ãªã³ã©ã€ã³ãã©ãŒã©ã **ïŒBioStarsãStack Exchangeã®Bioinformaticsã»ã¯ã·ã§ã³ã§è³ªåãè°è«ãè¡ããç¥èãæ·±ããŸãããã
– **åŠäŒãã»ãããŒ**ïŒãªã³ã©ã€ã³ã§éå¬ããããã€ãªã€ã³ãã©ããã£ã¯ã¹é¢é£ã®åŠäŒãã»ãããŒã«åå ããããšã§ãææ°ã®ç ç©¶ååãç¥ãããšãã§ããŸãã
### 5. æ
å ±çºä¿¡ãè¡ã
– **ããã°**ïŒåŠãã å
容ãå®è·µãããããžã§ã¯ãã®çµæãããã°ã«ãŸãšããŠçºä¿¡ããŸããåå¿è
åãã®ãã¥ãŒããªã¢ã«ãå
·äœçãªè§£ææé ã玹ä»ãããšãå€ãã®èªè
ã«åœ¹ç«ã€ã§ãããã
– **YouTubeãã£ã³ãã«**ïŒãããªåœ¢åŒã§è§£èª¬ãè¡ãããšã§ãèŠèŠçã«çè§£ããããã³ã³ãã³ããæäŸã§ããŸãã
– **SNS**ïŒTwitterãLinkedInãªã©ã§ææ°æ
å ±ãå
±æããåãåéã®å°éå®¶ãšã€ãªãããæã¡ãŸãããã
### ãŸãšã
ãã€ãªã€ã³ãã©ããã£ã¯ã¹ãç¬åŠã§åŠã¶ããšã¯å¯èœã§ããããªã³ã©ã€ã³ãªãœãŒã¹ãã³ãã¥ããã£ã掻çšããããšã§ã¹ãã«ãé«ããããšãã§ããŸããç¬èªã®ãããžã§ã¯ããå®è·µãããã®ææãããã°ãSNSã§çºä¿¡ããããšã§ãèªåã®åŒ·ã¿ãã¢ããŒã«ããä»ã®å°éå®¶ãšäº€æµããããšãã§ããŸãã
Q.04ãããããšããã ãã¶èªåã®æ¹åæ§ãèŠããŠããŸãããç§ã«ãšã£ãŠãè±èªãããã°ã©ãã³ã°èšèªã®ä¿®åŸãäžçªã®å£ã«ãªããšæããŸããæ«æããªãã³ãã¯ãããŸããïŒ
A.04ãè±èªãããã°ã©ãã³ã°èšèªã®ä¿®åŸã«ãããŠãæ«æããªãããã®ã³ããããã€ã玹ä»ããŸãã以äžã®æ¹æ³ã詊ããŠãå°ããã€ã¹ãã«ãé«ããŠãããŸãããã
### 1. å°ããªç®æšãèšå®ãã
倧ããªç®æšãäžåºŠã«éæããããšãããšãæ«æãããããªããŸããå°ããªç®æšãèšå®ããå°ããã€é²ããããšã倧åã§ããäŸãã°ãè±èªã®å匷ãªã1æ¥10åãããã°ã©ãã³ã°ãªã1æ¥1ã€ã®æ°ããæŠå¿µãåŠã¶ãªã©ãç¡çã®ãªãç¯å²ã§å§ããŸãããã
### 2. åŠç¿ã®ç¿æ
£å
æ¯æ¥å°ããã€åŠç¿ããç¿æ
£ãã€ããããšãéèŠã§ããç¿æ
£åããããšã§ãåŠç¿ãæ¥åžžã®äžéšãšãªããç¶ç¶ãããããªããŸããç¹å®ã®æéåž¯ãæ±ºããŠåŠç¿ããããšãå¿ãããŸãããã
### 3. å®è·µçãªãããžã§ã¯ãã«åãçµã
åŠãã ç¥èãå®éã«äœ¿ã£ãŠã¿ãããšã§ãçè§£ãæ·±ãŸããã¢ãããŒã·ã§ã³ãäžãããŸããå
·äœçãªãããžã§ã¯ããèšå®ããå°ããã€åãçµãããšã§ãéææãæããããšãã§ããŸããäŸãã°ãç°¡åãªãŠã§ããµã€ããäœæãããããŒã¿è§£æã®ãããžã§ã¯ããè¡ããªã©ãè¯ãã§ãããã
### 4. ãã£ãŒãããã¯ãåãã
ä»ã®äººããã®ãã£ãŒãããã¯ãåããããšã§ãèªåã®é²æã確èªããæ¹åç¹ãèŠã€ããããšãã§ããŸãããªã³ã©ã€ã³ãã©ãŒã©ã ãSNSã§è³ªåãçºè¡šãè¡ãããã£ãŒãããã¯ãåããããšãå¿ãããŸãããã
### 5. åŠç¿ä»²éãèŠã€ãã
åãç®æšãæã€åŠç¿ä»²éãšäžç·ã«åŠã¶ããšã§ãã¢ãããŒã·ã§ã³ãç¶æãããããªããŸãããªã³ã©ã€ã³ã³ãã¥ããã£ãå匷äŒã«åå ããŠãåŠç¿ä»²éãèŠã€ããŸãããã
### 6. ãªãœãŒã¹ã掻çšãã
質ã®é«ãåŠç¿ãªãœãŒã¹ã掻çšããããšã§ãå¹ççã«åŠç¿ããããšãã§ããŸãã以äžã®ãªãœãŒã¹ãåèã«ããŠã¿ãŠãã ããã
#### è±èªåŠç¿
– **Duolingo**ïŒã²ãŒã æèŠã§åŠã¹ãç¡æã®è±èªåŠç¿ã¢ããªã
– **BBC Learning English**ïŒå®è·µçãªè±èªåŠç¿ã®ããã®ã³ã³ãã³ããè±å¯ã
– **Grammarly**ïŒæç« ã®æ ¡æ£ãè¡ã£ãŠãããããŒã«ã§ãè±èªã®ã©ã€ãã£ã³ã°ã¹ãã«ãåäžãããã
#### ããã°ã©ãã³ã°åŠç¿
– **Codecademy**ïŒã€ã³ã¿ã©ã¯ãã£ããªããã°ã©ãã³ã°åŠç¿ãã©ãããã©ãŒã ã
– **FreeCodeCamp**ïŒå®è·µçãªãããžã§ã¯ããéããŠããã°ã©ãã³ã°ãåŠã¶ããšãã§ããç¡æã®ãªãœãŒã¹ã
– **LeetCode**ïŒããã°ã©ãã³ã°ã®åé¡è§£æ±ºã¹ãã«ãéããããã®ãã©ãããã©ãŒã ã
### 7. ããžãã£ããªãã€ã³ãã»ãããæã€
æ«æãæãããšãã¯ãããžãã£ããªãã€ã³ãã»ãããæã€ããšã倧åã§ãã倱æãæãããåŠã³ã®ããã»ã¹ãšããŠæããŸããããå°ããã€æé·ããŠããèªåãèªããããšããã¢ãããŒã·ã§ã³ãç¶æããéµã§ãã
ãããã®æ¹æ³ãå®è·µããªãããè±èªãããã°ã©ãã³ã°èšèªã®åŠç¿ã«åãçµãããšã§ãæ«æããã«ã¹ãã«ã身ã«ã€ããããšãã§ããã§ããããå¿æŽããŠããŸãïŒ
ãç§åŠè ãšããŠæåããã«ã¯ã
ãç§åŠè
ãšããŠæåããã«ã¯ã
How to be a successful scientist
Q.ãCARL J. SINDERMANNãã®ãThe JOY of SCIENCEãã«ãããšãç ç©¶è
ãšããŠæåããããã«äžå¿ãšãªãèŠçŽ ã¯ããç 究課é¡ãé©åã«éžã³ãçã®éã£ãå®éšãèšç»ããè«æãçºè¡šãç¶ããç ç©¶çµæããææçŸ©ãªæŽå¯ãå°ããäžã€ã®åéã§ã®æŠå¿µã®æ çµã¿ãäœãããšãžè²¢ç®ããç¹å®ã®åéã§ç¶ã
ãšçºè¡šãããŠããæç®ã«æãããææãçºè¡šããéãŸãã§ã¯æå¹ã«äº€æµã§ããèªåã®æèœããæ§ããã«ç€ºãããšãããªã©ã§ããããšæžãããŠããã
ç§ã¯ä»ããã€ãªã€ã³ãã©ããã£ã¯ã¹ã®äžçã«èº«ãæããããšèããŠãããç§ãå°ãæããã®ã¯ãéé¡ã®è²èŠãã«ã€ããŠã§ããå®éšéãšããŠä»ãŸã§ãã³ã®ã§ãçšããŠããããä»åŸã¯ãŒãã©ãã£ãã·ã¥ãçšããã€ããã§ãããŒãã©ãã£ãã·ã¥ãšããã®éºäŒåé
åãæ¯èŒãããã®çžåæ§ãšç¹ç°ç¹ãç¥ããèæ€åç©ã«å
±éãããè²èŠã®éºäŒæ
å ±ãåãæ±ããããã«ããããšèããŠããŸãããã®èª²é¡ãéžã¶ã®ã¯é
ãã§ããããïŒãã®åéã®ããªãã®ç¥ãããéãæ°ããç¥èŠã瀺ããŠäžããã
A.ãã€ãªã€ã³ãã©ããã£ã¯ã¹ã®åéã§ãéé¡ã®è²èŠããç ç©¶ããããšã¯ãéåžžã«è峿·±ãææçŸ©ãªèª²é¡ã§ãããŒãã©ãã£ãã·ã¥ïŒDanio rerioïŒã¯ãéºäŒåŠçç ç©¶ãçºççç©åŠç ç©¶ã®ã¢ãã«çç©ãšããŠåºãå©çšãããŠãããç¹ã«ãããšå ±éããå€ãã®éºäŒåãæã£ãŠãããããããã®è²èŠç ç©¶ã«ã貎éãªæ å ±ãæäŸããããšãã§ããŸãã
### ãã®åéã®æ°ããç¥èŠ
1. **ãŒãã©ãã£ãã·ã¥ã®ã²ãã è§£æ**: ãŒãã©ãã£ãã·ã¥ã®ã²ãã ã¯å®å šã«è§£èªãããŠãããç¹å®ã®éºäŒåã®æ©èœãçºçŸãã¿ãŒã³ã調æ»ããããã®ããŒã«ãå å®ããŠããŸããããã«ãããè²èŠã«é¢äžããéºäŒåã詳现ã«è§£æããããšãå¯èœã§ãã
2. **éºäŒåç·šéæè¡**: CRISPR-Cas9ãªã©ã®éºäŒåç·šéæè¡ãçšããŠãç¹å®ã®éºäŒåã®æ©èœãè§£æããããè²èŠã«é¢é£ããéºäŒåã®å€ç°ãå°å ¥ããããšã§ãè²èŠã®ã¡ã«ããºã ãããæ·±ãçè§£ããããšãã§ããŸãã
3. **ç¥çµåè·¯ã®è§£æ**: ãŒãã©ãã£ãã·ã¥ã®è³ã®éæåæè¡ãã«ã«ã·ãŠã ã€ã¡ãŒãžã³ã°æè¡ãçšããããšã§ãè²èŠã«é¢äžããç¥çµåè·¯ããªã¢ã«ã¿ã€ã ã§èгå¯ããããšãã§ããŸããããã«ãããè²èŠæ å ±ãã©ã®ããã«åŠçãããŠããããçè§£ããããšãã§ããŸãã
4. **ãããšã®æ¯èŒè§£æ**: ãããšãŒãã©ãã£ãã·ã¥ã®éºäŒåé åã®çžåæ§ãæ¯èŒããããšã§ãé²åçã«ä¿åãããŠããè²èŠã®ã¡ã«ããºã ãç¹å®ããããšãã§ããŸããããã«ãããèæ€åç©ã«å ±éããè²èŠã®åºæ¬åçãè§£æããããšãæåŸ ãããŸãã
### é©åãªã¿ã€ãã³ã°ãã©ãã
ãéé¡ã®è²èŠãã®ç ç©¶ã¯ãäŸç¶ãšããŠé²åããŠããåéã§ãããç¹ã«ãã€ãªã€ã³ãã©ããã£ã¯ã¹ã®ææ³ãçšããç ç©¶ã¯ãŸã å€ãã®çºå±ã®äœå°ããããŸãããããã£ãŠããã®ç 究課é¡ãéžã¶ã®ã¯é ããªãã©ãããããããæ°ããªç¥èŠãçã¿åºã絶奜ã®ã¿ã€ãã³ã°ã§ãããšèšããŸãã
ãã®åéã§æåããããã«ã¯ã以äžã®ãã€ã³ãã«çæãããšè¯ãã§ããã:
1. **ææ°ã®ç ç©¶ååãææ¡ãã**: åžžã«ææ°ã®æç®ããã§ãã¯ããç ç©¶ã®æåç·ã§äœãè¡ãããŠããããææ¡ããããšãéèŠã§ãã
2. **匷åãªãããã¯ãŒã¯ãç¯ã**: åŠäŒãç ç©¶éäŒã§ã®çºè¡šãéããŠãåãåéã®ç ç©¶è ãšæå¹ã«äº€æµããããšã倧åã§ãã
3. **å€åéãšã®é£æº**: ãã€ãªã€ã³ãã©ããã£ã¯ã¹ã ãã§ãªããéºäŒåŠãçç©ç©çåŠãç¥çµç§åŠãªã©å€ãã®é¢é£åéãšé£æºããããšã§ãããç·åçãªç¥èŠãåŸãããšãã§ããŸãã
ãã®ããã«ããŠããã€ãªã€ã³ãã©ããã£ã¯ã¹ã®äžçã§ãéé¡ã®è²èŠãã«é¢ããç ç©¶ãé²ããŠããããšã§ãè²èŠã®éºäŒçããã³ç¥çµçåºç€ã«é¢ããéèŠãªç¥èŠãåŸãããšãã§ããã§ãããã
ãèæ€åç©ã®èŠç©è³ªã®ã²ãã ã«é¢ããç ç©¶ã
ãèæ€åç©ã®èŠç©è³ªã®ã²ãã ã«é¢ããç ç©¶ã
Study on the genome of vertebrate visual pigments
Q.
以äžã®æç« ãããå
·äœçãªéºäŒåã®è§£ææ¹æ³ãšäºæž¬ãããçµæãèå¯ããã
ãé¡ç®ã
èæ€åç©ã®èŠç©è³ªã®ã²ãã ã«é¢ããç ç©¶
Study on the genome of vertebrate visual pigments
ãç·èšã
ãŒãã©ãã£ãã·ã¥ã¯ïŒè²åè²èŠãæããããã¯ïŒè²åè²èŠãæããããšãããã£ãŠããã
èæ€åç©ã®èŠçްèã®èŠç©è³ªã¯ãæ¡¿äœèŠç©è³ªïŒRH1ïŒãããã·ã³ïŒãšæå€§åžåæ³¢é·ïŒÎ»maxïŒãç°ã«ããïŒã¿ã€ãã®éäœèŠç©è³ªïŒãªãã·ã³ïŒ[èµ€åïŒLWS/MWSïŒãç·åïŒRH2ïŒãéåïŒSWS2ïŒã玫å€ç·å(SWS1)]ã®ïŒçš®é¡ãããã
ãŒãã©ãã£ãã·ã¥ã¯äžèšïŒã¿ã€ãã®èŠç©è³ªããã€ïŒè²åè²èŠãæããã
ããïŒçç¿é¡ïŒã¯åºä¹³é¡ã§äžè¬çãªïŒè²åããïŒè²åãžãšè²èŠã髿¬¡åãããç¹ã§ç¹ç°ãªååšã§ããã
ãŸããåç¿é¡ã¯å€è¡æ§åç©ã®èŠèŠã®ç¹åŸŽãšããŠã
â è§£å床ãç ç²ã«ããæåºŠã®åäž
â¡è²èŠã®çž®é
â¢æåæ³¢é·é åã®çæ³¢é·åŽãžã®ã·ãã
â£æåæ³¢é·é åã®æ¡å€§
ãªã©ãæããããããã«å¯Ÿå¿ããèŠç©è³ªéºäŒåã¬ãã«ã®é²åãè§£æããç ç©¶ã§ã¯ãè¡æ¶²ã»çŒçã»ç³ãµã³ãã«ããã®èµ€ç·èŠç©è³ªéºäŒååå€å®æ³ã確ç«ãããã²ãã DNAã®ãµã¶ã³ãã€ããªãã€ãŒãŒã·ã§ã³ã®çµæãããéºäŒåéè€ã®æç¡ã瀺åãããïŒ2003,Kawamura,SïŒã
ãç®çã
æ¬ç ç©¶ã®ç®çã¯é²åã®éçšã§éè€ãçµãããã®èŠç©è³ªã®ã²ãã ãšãã以åã®è²èŠåãæããéé¡ã®èŠç©è³ªã®ã²ãã ãæ¯èŒããŠããããéå»ã«åŸãŠããå€åœ©ãªè²èŠãåã³ç²åŸããæ¹æ³ã確ç«ããäž»ã«è²åŒ±ãªããã«æå¹ãªè¬ãéçºïŒåµè¬ïŒããããšãå¯èœããæ€èšããããšã§ããã
ãæ¹æ³ã
ãŒãã©ãã£ãã·ã¥ãšããã®ã²ãã ã¯å®å
šã«è§£èªãããŠãããç¹å®ã®éºäŒåã®æ©èœãçºçŸãã¿ãŒã³ã調æ»ããããã®ããŒã«ãå
å®ããŠããããŒãã©ãã£ãã·ã¥ã®ããŒã¿ããŒã¹ã¯ZFINãããã®ããŒã¿ããŒã¹ã¯NCBIã§ããããããã®ããŒã¿ããŒã¹ãšBioPythonãçšããŠãè²èŠã«é¢äžããéºäŒåãè§£æããã
ãçµæã
çŸæç¹ã§ã¯éºäŒåã®è§£ææ¹æ³ã確ç«ãããŠããªãããâã2025/03/31(æ)æç¹ã§ç§ã®çè§£ãåãã§ããªããæ¢ã«ç¢ºç«ãããŠãããšæãã
A.(ChatGPT Ver.3.5)
### å
·äœçãªéºäŒåã®è§£ææ¹æ³ãšäºæž¬ãããçµæ
#### éºäŒåã®è§£ææ¹æ³
1. **ããŒã¿ããŒã¹ã®å©çš**
– **ZFIN** (Zebrafish Information Network): ãŒãã©ãã£ãã·ã¥ã®éºäŒåãéºäŒåçºçŸã衚çŸåãå€ç°äœã®ããŒã¿ããŒã¹ã
– **NCBI** (National Center for Biotechnology Information): ãããå«ãå€ãã®çç©ã®ã²ãã ããŒã¿ãæäŸããããŒã¿ããŒã¹ã
2. **éºäŒåã·ãŒã±ã³ã¹ã®æ¯èŒ**
– **BioPython** ãçšããŠããŒãã©ãã£ãã·ã¥ãšããã®è²èŠã«é¢é£ããéºäŒåã·ãŒã±ã³ã¹ãååŸã
– ããã®èŠç©è³ªéºäŒåïŒRH1, LWS/MWS, RH2, SWS2, SWS1ïŒããŒãã©ãã£ãã·ã¥ã®ååéºäŒåãšæ¯èŒã
– ã·ãŒã±ã³ã¹ã¢ã©ã€ã¡ã³ãããŒã«ïŒäŸ: Clustal Omega, MUSCLEïŒã䜿çšããŠãéºäŒåéã®çžåæ§ã確èªã
3. **éºäŒåçºçŸè§£æ**
– **RNA-seq** ããŒã¿ãå©çšããŠããŒãã©ãã£ãã·ã¥ãšããã®èŠç©è³ªéºäŒåã®çºçŸãã¿ãŒã³ãæ¯èŒã
– çºçŸãããã¡ã€ã«ãè§£æããçºçŸéã®éããå
±éç¹ã確èªã
4. **éºäŒåéè€ã®æ€åº**
– ãµã¶ã³ãã€ããªãã€ãŒãŒã·ã§ã³ã®çµæãåè§£æãããŒãã©ãã£ãã·ã¥ãšããã®èŠç©è³ªéºäŒåã®éè€ã®æç¡ã確èªã
– ãã©ãã°ïŒéºäŒåéè€ã«ãã£ãŠçããéºäŒåïŒã®é²åçå€åãè§£æã
5. **æ©èœè§£æ**
– CRISPR-Cas9ãçšããŠããŒãã©ãã£ãã·ã¥ã®ç¹å®ã®ãªãã·ã³éºäŒåãããã¯ã¢ãŠããããã®åœ±é¿ã芳å¯ã
– ããã®èŠç©è³ªéºäŒåããŒãã©ãã£ãã·ã¥ã«å°å
¥ããè²èŠã®å€åãè©äŸ¡ã
#### äºæž¬ãããçµæ
1. **éºäŒåéã®çžåæ§**
– ãŒãã©ãã£ãã·ã¥ãšããã®èŠç©è³ªéºäŒåéã«é«ãçžåæ§ãèŠãããããç¹å®ã®å€ç°ãéºäŒåéè€ã«ããéãã確èªãããã
2. **éºäŒåçºçŸã®éã**
– ãŒãã©ãã£ãã·ã¥ã§ã¯ã4è²åè²èŠã«å¯Ÿå¿ãããªãã·ã³éºäŒåãåºç¯ã«çºçŸããŠããããããã§ã¯3è²åè²èŠã«å¯Ÿå¿ãããªãã·ã³éºäŒåã®çºçŸãäž»ã§ããã
– ããã®2è²åè²èŠãã3è²åè²èŠãžã®é²åã«äŒŽãéºäŒåçºçŸã®å€åã確èªãããã
3. **éºäŒåéè€ã®çºèŠ**
– ããã®èŠç©è³ªéºäŒåã«ãããŠãéå»ã®éºäŒåéè€ã€ãã³ããç¹å®ãããããã3è²åè²èŠã®é²åã«å¯äžããŠããããšã瀺åãããã
– ãŒãã©ãã£ãã·ã¥ã§ã¯ãèŠç©è³ªéºäŒåã®éè€ã4è²åè²èŠã®åºç€ã圢æããŠããããšã確èªãããã
4. **æ©èœçãªéãã®çºèŠ**
– ãŒãã©ãã£ãã·ã¥ã®ãªãã·ã³éºäŒåã®ããã¯ã¢ãŠãå®éšã«ãããç¹å®ã®ãªãã·ã³ãæ¬ æããéã®è²èŠã®å€åã芳å¯ãããã
– ããã®èŠç©è³ªéºäŒåããŒãã©ãã£ãã·ã¥ã«å°å
¥ããããšã§ãè²èŠã®å€åãè©äŸ¡ãããããã®è²èŠé²åã®ã¡ã«ããºã ãæããã«ãªãã
5. **åµè¬ã®å¯èœæ§**
– ããã®èŠç©è³ªéºäŒåã®é²åã«äŒŽãå€ç°ã®ç¹å®ã«ãããè²åŒ±ã«å¯Ÿããæ²»çè¬ã®ã¿ãŒã²ãããæç¢ºã«ãªãã
– ç¹å®ã®éºäŒåå€ç°ãä¿®æ£ããããšã§ãè²èŠç°åžžãæ¹åããå¯èœæ§ã瀺åãããã
ãã®ãããªè§£æãéããŠããŒãã©ãã£ãã·ã¥ãšããã®è²èŠã«é¢äžããéºäŒåã®é²åçãªéããæããã«ãããããåºã«è²åŒ±ã®æ²»çæ³ãéçºããããšãæåŸ ãããŸãã
ãèŠç©è³ªéºäŒåã®æ£åŒåç§°ãšããããã®éºäŒåã®èª¬æã
ãèŠç©è³ªéºäŒåã®æ£åŒåç§°ãšããããã®éºäŒåã®èª¬æã
Formal names of visual pigment genes and explanations of each gene
èŠç©è³ªéºäŒåã®æ£åŒåç§°ãšããããã®éºäŒåã®èª¬æã以äžã«ç€ºããŸãã
1. RH1: Rod Opsin
æ£åŒåç§°: Rhodopsin
説æ:
ãããã·ã³ã¯ãèŠèŠã«é¢äžããæ¡¿äœçްèã«ååšããå
å容äœã¿ã³ãã¯è³ªã§ãããããã·ã³ã¯æãç°å¢ã§ã®èŠèŠãå¯èœã«ããå
ãåžåããŠã·ã°ãã«ãçæããããã«éèŠã§ããå
åããããã·ã³ã«åžåããããšãã¿ã³ãã¯è³ªã¯æ§é å€åãèµ·ãããèŠèŠä¿¡å·ãè³ã«éãäžé£ã®ååŠåå¿ãåŒãèµ·ãããŸãããããã·ã³ã®éºäŒåå€ç°ã¯ãå€ç²çãèŠèŠé害ã®åå ãšãªãããšããããŸãã
2. LWS/MWS: Long/Medium Wavelength Sensitive Opsins
æ£åŒåç§°: Long-wavelength-sensitive opsin 1 (LWS) / Medium-wavelength-sensitive opsin 1 (MWS)
説æ:
ãããã®ãªãã·ã³ã¯éäœçްèã«ååšããè²èŠã«é¢äžããŸããLWSã¯èµ€è²å
ïŒé·æ³¢é·ïŒããMWSã¯ç·è²å
ïŒäžæ³¢é·ïŒãåžåããŸããããã®å Žåããããã®éºäŒåã®å€ç°ãç°åžžã¯ãèµ€ç·è²èŠç°åžžïŒè²ç²ïŒã®åå ãšãªããŸããLWSãšMWSã¯é²åçã«è¿çžã§ãããå
±éã®ç¥å
ããéºäŒåéè€ã«ãã£ãŠåå²ãããšèããããŠããŸãã
3. RH2: Rhodopsin-like 2
æ£åŒåç§°: Rhodopsin-like 2
説æ:
RH2ãªãã·ã³ã¯ãç·è²å
ïŒäžæ³¢é·ïŒã«æãææãªéäœçްèã«ååšããŸããããã¯LWS/MWSãªãã·ã³ãšåæ§ã«ãè²èŠã«ãããŠéèŠãªåœ¹å²ãæãããŸããRH2ãªãã·ã³ã¯ãç¹ã«éé¡ãäž¡çé¡ãªã©ã®æ°Žçåç©ã«ãããŠåºãååšãããããã®çç©ãåšå²ã®ç°å¢ã«é©å¿ããããã«é²åãããšèããããŠããŸãã
4. SWS2: Short Wavelength Sensitive Opsin 2
æ£åŒåç§°: Short-wavelength-sensitive opsin 2
説æ:
SWS2ãªãã·ã³ã¯ãéè²å
ïŒçæ³¢é·ïŒã«æãææãªéäœçްèã«ååšããŸãããã®ãªãã·ã³ã¯ãéè²å
ãåžåããŠèŠèŠä¿¡å·ãçæããããã«éèŠã§ããéé¡ãé³¥é¡ãªã©ãå€ãã®èæ€åç©ã§èŠããããã®éºäŒåã¯ãè²èŠã®å€æ§æ§ãçè§£ããäžã§éèŠã§ãã
5. SWS1: Short Wavelength Sensitive Opsin 1
æ£åŒåç§°: Short-wavelength-sensitive opsin 1
説æ:
SWS1ãªãã·ã³ã¯ã玫å€ç·ãéåžžã«çæ³¢é·ã®å
ã«æãææãªéäœçްèã«ååšããŸãããã®ãªãã·ã³ã¯ãé³¥é¡ãéé¡ãäž¡çé¡ããããŠäžéšã®åºä¹³é¡ã«ãããŠçŽ«å€ç·èŠèŠã«é¢äžããŸããSWS1ã®éºäŒåã¯ãé²åã®éçšã§å€æ§ãªç°å¢é©å¿ã瀺ãè峿·±ãäŸã§ãã
ãããã®èŠç©è³ªéºäŒåã¯ãèæ€åç©ã®è²èŠã®é²åãšå€æ§æ§ãçè§£ããäžã§éèŠãªåœ¹å²ãæãããŠããŸããèŠèŠã®ã¡ã«ããºã ãé²åãç ç©¶ããéã«ããããã®éºäŒåã®æ§é ãæ©èœã詳现ã«èª¿ã¹ãããšã¯éåžžã«æçã§ãã
ãéºäŒåã®è§£ææ¹æ³ïŒããŒã¿ããŒã¹ã®å©çšïŒã
ãéºäŒåã®è§£ææ¹æ³ïŒããŒã¿ããŒã¹ã®å©çšïŒã
Genetic analysis method (use of database)
Q.
NCBI(National Center for Biotechnology Information)ïŒãããå«ãå€ãã®çç©ã®ã²ãã ããŒã¿ãæäŸããããŒã¿ããŒã¹ã
https://www.ncbi.nlm.nih.gov/
ã«ãŠãèŠç©è³ªã®ããŒã¿ãæ€çŽ¢ã
ããïŒhomo sapiens
ãŒãã©ãã£ãã·ã¥ïŒDanio rerio
ã®æ¡¿äœèŠç©è³ªãšéäœèŠç©è³ªãæ€çŽ¢ããããšããã
âæ¡¿äœèŠç©è³ªïŒRH1ïŒãããã·ã³ïŒ
ããã®æ¡¿äœèŠç©è³ªïŒRH1ïŒãããã·ã³ïŒ
https://www.ncbi.nlm.nih.gov/nuccore/?term=homo+sapiens+RH1
ãŒãã©ãã£ãã·ã¥ã®æ¡¿äœèŠç©è³ªïŒRH1ïŒãããã·ã³ïŒ
https://www.ncbi.nlm.nih.gov/nuccore/?term=Danio+rerio+RH1
âéäœèŠç©è³ªïŒãªãã·ã³ïŒ
èµ€åïŒLWS/MWSïŒãç·åïŒRH2ïŒãéåïŒSWS2ïŒã玫å€ç·å(SWS1)
ããã®éäœèŠç©è³ª
https://www.ncbi.nlm.nih.gov/nuccore/?term=visual+pigments+homo+sapiens
ãŒãã©ãã£ãã·ã¥ã®éäœèŠç©è³ª
https://www.ncbi.nlm.nih.gov/nuccore/?term=visual+pigments+Danio+rerio
ããã§ãNCBIã®ããŒã¿ã®äžã«
Literature
Genes
Proteins
Genomes
Clinical
PubChem
ãããããããã®äžã«ã«ããŽãªãããã«çްååãããŠããããšãããã£ãã
ç§ã®ç ç©¶ã«äœ¿ãã®ã¯ã©ãã奜ãŸããã®ãããããªãã®ã§æããŠäžããã
A.(ChatGPT Ver.3.5)
NCBIã®ããŒã¿ããŒã¹ã«ã¯å€ãã®æ
å ±ãå«ãŸããŠãããç¹å®ã®ç ç©¶ç®çã«å¿ããŠã©ã®ã«ããŽãªãæãé©ããŠããããéžã¶ããšãéèŠã§ããèŠç©è³ªã«é¢é£ããç ç©¶ã§æçšãªã«ããŽãªã«ã€ããŠä»¥äžã«èª¬æããŸãã
### 1. **Genes**
– **çšé**: ç¹å®ã®éºäŒåã«ã€ããŠã®è©³çŽ°ãªæ
å ±ãååŸããã
– **å
容**: éºäŒåã®ã·ãŒã±ã³ã¹ãæ§é ãçºçŸãã¿ãŒã³ãé¢é£ããå€ç°ãéºäŒåæ©èœã«é¢ããæ³šéã
– **䜿çšäŸ**: ãããšãŒãã©ãã£ãã·ã¥ã®èŠç©è³ªéºäŒåïŒRH1ãLWS/MWSãRH2ãSWS2ãSWS1ïŒãç¹å®ãããã®ã·ãŒã±ã³ã¹ãæ¯èŒããã
### 2. **Proteins**
– **çšé**: ç¹å®ã®ã¿ã³ãã¯è³ªã«ã€ããŠã®è©³çŽ°ãªæ
å ±ãååŸããã
– **å
容**: ã¿ã³ãã¯è³ªã®ã¢ããé
žé
åãæ§é ãæ©èœãçºçŸããŒã¿ããã¹ã翻蚳修食ã
– **䜿çšäŸ**: èŠç©è³ªãªãã·ã³ã®ã¿ã³ãã¯è³ªæ§é ãæ©èœã®éããæ¯èŒããã
### 3. **Genomes**
– **çšé**: å
šã²ãã ã®æ
å ±ãååŸããã²ãã å
šäœã®è§£æãè¡ãã
– **å
容**: ã²ãã ã®ã¢ãããŒã·ã§ã³ãéºäŒåã®äœçœ®æ
å ±ãã²ãã é
åããŒã¿ã
– **䜿çšäŸ**: ã²ãã å
šäœã®èŠç©è³ªéºäŒåã®é
眮ãéè€ã®æç¡ãè§£æããã
### 4. **Literature**
– **çšé**: é¢é£ããç ç©¶è«æãæ€çŽ¢ããææ°ã®ç ç©¶ååãææ¡ããã
– **å
容**: PubMedã«æ²èŒãããç§åŠè«æã®èŠçŽãšãªã³ã¯ã
– **䜿çšäŸ**: èŠç©è³ªéºäŒåã«é¢ããææ°ã®ç ç©¶ææãã¬ãã¥ãŒè«æã調ã¹ãã
### 5. **Clinical**
– **çšé**: èšåºè©ŠéšãéºäŒåçŸæ£ã«é¢ããæ
å ±ãååŸããã
– **å
容**: éºäŒåçŸæ£ããŒã¿ããŒã¹ãèšåºè©Šéšã®æ
å ±ã
– **䜿çšäŸ**: è²èŠç°åžžã«é¢ããéºäŒåå€ç°ãèšåºè©Šéšã®ããŒã¿ã調ã¹ãã
### 6. **PubChem**
– **çšé**: ååŠç©è³ªãè¬å€ã«é¢ããæ
å ±ãååŸããã
– **å
容**: ååŠç©è³ªã®æ§é ãæ§è³ªãæŽ»æ§ãçç©åŠç广ã
– **䜿çšäŸ**: èŠç©è³ªã«åœ±é¿ãäžããå¯èœæ§ã®ããååç©ã®æ
å ±ã調ã¹ãã
### å
·äœçãªæŽ»çšæ¹æ³
#### éºäŒåæ
å ±ã®ååŸïŒGenesïŒ
– ããã®RH1éºäŒåã®è©³çްæ
å ±ãåŸãããã«ãGenesã«ããŽãªã§ãhomo sapiens RH1ããæ€çŽ¢ããŸãã
– ãŒãã©ãã£ãã·ã¥ã®RH1éºäŒåã®è©³çްæ
å ±ãåŸãããã«ãGenesã«ããŽãªã§ãDanio rerio RH1ããæ€çŽ¢ããŸãã
#### ã¿ã³ãã¯è³ªæ
å ±ã®ååŸïŒProteinsïŒ
– ããã®ãããã·ã³ã¿ã³ãã¯è³ªã®æ§é ãæ©èœã調ã¹ãããã«ãProteinsã«ããŽãªã§ãhomo sapiens RH1 proteinããæ€çŽ¢ããŸãã
– ãŒãã©ãã£ãã·ã¥ã®ãããã·ã³ã¿ã³ãã¯è³ªã®æ§é ãæ©èœã調ã¹ãããã«ãProteinsã«ããŽãªã§ãDanio rerio RH1 proteinããæ€çŽ¢ããŸãã
#### ã²ãã å
šäœã®è§£æïŒGenomesïŒ
– ãŒãã©ãã£ãã·ã¥ã®ã²ãã å
šäœã®èŠç©è³ªéºäŒåã®é
眮ãéè€ã調ã¹ãããã«ãGenomesã«ããŽãªã§ãDanio rerio genomeããæ€çŽ¢ããŸãã
#### æç®æ
å ±ã®ååŸïŒLiteratureïŒ
– ææ°ã®ç ç©¶ååãææ¡ããããã«ãLiteratureã«ããŽãªã§ãhomo sapiens RH1ãããDanio rerio RH1ãã«é¢é£ããè«æãæ€çŽ¢ããŸãã
#### èšåºæ
å ±ã®ååŸïŒClinicalïŒ
– è²èŠç°åžžã«é¢ããéºäŒåå€ç°ãæ²»çæ³ã«ã€ããŠèª¿ã¹ãããã«ãClinicalã«ããŽãªã§ãcolor vision deficiencyããæ€çŽ¢ããŸãã
### æšå¥šããæé
1. **Genesã«ããŽãª**ã§ãããšãŒãã©ãã£ãã·ã¥ã®èŠç©è³ªéºäŒåã®æ
å ±ãåéã
2. **Proteinsã«ããŽãª**ã§é¢é£ããã¿ã³ãã¯è³ªã®æ§é ãšæ©èœã確èªã
3. **Genomesã«ããŽãª**ã§ã²ãã å
šäœã®éºäŒåé
眮ãè§£æã
4. **Literatureã«ããŽãª**ã§ææ°ã®ç ç©¶è«æã調ã¹ãç ç©¶ã®èæ¯ãšååãææ¡ã
5. **å¿
èŠã«å¿ããŠClinicalã«ããŽãª**ã§èšåºæ
å ±ã確èªããå¿çšç ç©¶ã®èŠç¹ãåŸãã
ãã®æé ã«åŸã£ãŠãèŠç©è³ªã®éºäŒåè§£æãé²ãããšå¹æçã§ãã
ãåããŠã®BioPythonïŒäŸïŒã
ãåããŠã®BioPythonïŒäŸïŒã
First time with BioPython (example)
ããã§ã¯äŸãšããŠã
NCBI
https://www.ncbi.nlm.nih.gov/
ã«ãŠããNucleotide ããéžæãã
ãHomo sapiens nudix hydrolase 12(NUDT12),transcript variant 2,mRNAã
ãæ€çŽ¢ããéžæããã

ããŒã¿ããŒã¹
ãNCBI Reference Sequence: NM_001300741.2ãâã¢ã¯ã»ãã·ã§ã³çªå·(Accession Number)
ã衚瀺ãããã
ãFEATURESãã®äžã®ãCDSãã®å¡©åºé åã«ã€ããŠèª¿ã¹ãŠã¿ãã
Windows11Proã®PCã§ããAnaconda Navigatorããèµ·åãã

ãJupyter Notebookããéãã
ã#ãã§ã³ã¡ã³ãã¢ãŠãããŠããè¡ãšããŠããªãè¡ã¯å¥ããã°ã©ã ã
è¡éãçç¥ããããã«ã³ã¡ã³ãã¢ãŠãããŠããè¡ã®çµæã¯ãã¹ãŠè¡šç€ºããŠããªãã
宣èšãéè€ããŠãããããããªããçµæã¯æ£ããåž°ã£ãŠããŠããã
# !pip install biopython #BioPythonã®ã€ã³ã¹ããŒã«
# from Bio import Entrez
# from Bio import SeqIO
# Entrez.email = “èªåã®ã¡ãŒã«ã¢ãã¬ã¹”
# handle = Entrez.efetch(db=”nucleotide”,id=”NM_001300741″,rettype=”gb”)
# nucdata = SeqIO.read(handle,”genbank”)
# print(nucdata.seq) #å¡©åºé åã®åºå
# len(nucdata.seq) #é åã®æ°ãåºå
# print(nucdata.seq[0:10]) #é åã®å§ãã®10åãåºå
# print(nucdata.seq[0:10]) #é åã®1ïœ10çªç®ãåºå
# print(nucdata.seq[-10:]) #é åã®æåŸã®10åãåºå
# print(nucdata.seq[::-1]) #å¡©åºé åã®éæ¹åãåºå
# print(nucdata.seq.complement()) #çžè£éãåºå
# print(nucdata.seq.reverse_complement()) #éçžè£éãåºå
# print(nucdata.seq.transcribe()) #RNAã«è»¢åãããé å(TãUã«)
# print(nucdata.seq[93:1428].translate()) #é åã®94ïœ1248ãã¢ããé žé åã«å€æ
from Bio import Entrez
from Bio import SeqIO
from Bio.SeqUtils import gc_fraction #GC嫿éã調ã¹ãããã«è¿œèš
from Bio.Seq import Seq #GC嫿éã調ã¹ãããã«è¿œèš
Entrez.email = “èªåã®ã¡ãŒã«ã¢ãã¬ã¹”
handle = Entrez.efetch(db=”nucleotide”,id=”NM_001300741″,rettype=”gb”)
nucdata = SeqIO.read(handle,”genbank”)
dna_sequence = Seq(nucdata.seq)
gc_content = gc_fraction(dna_sequence) * 100 #çµæãããŒã»ã³ããŒãžã«å€æããããã«100ãæããŠãã
print(gc_content)
33.867210250436806
from collections import Counter
Counter(dna_sequence) #å¡©åºã®æ°ãã«ãŠã³ããã
Counter({‘A’: 1156, ‘T’: 1115, ‘G’: 620, ‘C’: 543})
from collections import Counter
Counter(nucdata.seq[93:1428].translate()) #ã¢ããé
žã®æ°ãã«ãŠã³ããã
Counter({‘L’: 46,
‘E’: 38,
‘K’: 32,
‘A’: 32,
‘V’: 30,
‘G’: 26,
‘S’: 25,
‘I’: 25,
‘P’: 25,
‘T’: 21,
‘R’: 20,
‘N’: 19,
‘Q’: 18,
‘F’: 18,
‘D’: 18,
‘C’: 13,
‘H’: 12,
‘Y’: 10,
‘W’: 9,
‘M’: 7,
‘*’: 1})
â»åèåç»
ãPythonã§çç©DNAïŒã²ãã ïŒåæãããŠã¿ãããBioPythonå
¥éãã
https://www.youtube.com/watch?v=zzP6hSkRwDw&t=64s
ãåèæç®ã»åèæžã»ä»ã
ãåèæç®ãReferences
âªè±æâ«
ãNIH Grant GM-42379ã
1999_Adaptive evolution of color vision of the Comoran coelacanth
1999_Genetic Analyses of Visual Pigments of the Pigeon (Columba livia)
1999_The Molecular Genetics of Red and Green Color Vision in Mammals
2001_The Molecular Genetics and Evolution of Red and Green Color Vision in Vertebrates
2005_Elephants and Human Color-Blind Deuteranopes Have Identical Sets
ãçŠå²¡åœééå£éºäŒåŠã·ã³ããžãŠã è°äºé²ã
1999_Molecular bases of color vision in vertebratesã
(èæ€åç©ã«ãããè²èŠã®ååå¡©åºïŒå
𿿥æ¬èªèš³ïŒå³è¡šä»ãïŒ)
âªåæâ«
2000_æ°äžçã¶ã« Red-Green èŠç©è³ªéºäŒåãšè²èŠã®é²å
2001_èŠç©è³ªã«ãããåžåæ³¢é·å¶åŸ¡æ©æ§
2003_ãŠãããŒãµã«ãã¶ã€ã³ã«ãããè²èŠããªã¢ããªãŒãžã®æèš
2006_ã«ã©ã·ã³ç®éé¡ããèŠãèµ€ç·åèŠç©è³ªéºäŒåã®éè€ãšæ©èœåå
2008_éè€éºäŒåæ©èœåæ¥ã®èгç¹ããèŠãéé¡å€éèŠèŠå
å容äœãã¡ããªãŒã®é²å
2009_éäœãªãã·ã³éºäŒåãšè²èŠã®é²å倿§æ§ïŒéé¡ãšéé·é¡ã«æ³šç®ããŠïŒæ²³ææ£äº(2009), æ¯èŒçççååŠ, Vol.26, No.3, pp.110-116ïŒ
2019_æ¥æ¬è²åœ©åŠäŒèª_éé¡ã®è²èŠ âŒæ°Žäžã®å€åœ©ãªå
ç°å¢ãžã®é©å¿âŒ
2020_ã«ã¬ã€ç®èŠèŠãªãã·ã³ã®ååé²ååŠçç ç©¶
2020_åè²åè²èŠã®åœ¢ææ©æ§è§£æã«åããéäœã®æåã»æçæ©æ§ã®è§£æ
2021_ããžã§ãŠã«ãããéæ³³è¡åããã³çŒçã®æèšéºäŒåçºçŸãšå
å容äœã®è§£æ
2023_èæ€åç©èŠçްèã®çš®éçžåæ§ãæ¯ãã现èååã¡ã«ããºã
ãåèæžãReference book
ããªãã«ã圹ç«ã€ãã€ãªã€ã³ãã©ããã£ã¯ã¹
å®è·µãã€ãªã€ã³ãã©ããã£ã¯ã¹
æ±äº¬å€§åŠãã€ãªã€ã³ãã©ããã£ã¯ã¹éäžè¬çŸ©
ãã€ãªã€ã³ãã©ããã£ã¯ã¹, 第2ç
ãã€ãªã€ã³ãã©ããã£ã¯ã¹åºç€è¬çŸ©
ãã€ãªã€ã³ãã©ããã£ã¯ã¹äºå
ž
ãã€ãªã€ã³ãã©ããã£ã¯ã¹ã®ããã®Perlå
¥é
ã¯ãããŠã®ãã€ãªã€ã³ãã©ããã£ã¯ã¹
çç³»ç·åã®ããã®çåœç§åŠ, 第2ç
çç©åŠèŸå
ž
çååŠèŸå
ž
éé¡ã®DNA
ãŒãã©ãã£ãã·ã¥å®éšã¬ã€ã
ãããŒã¿ããŒã¹ã
DDBJïŒæ¥æ¬ïŒ
EMBL-EBIïŒæ¬§å·ïŒ
NCBIïŒç±³åœïŒ
NCBIïŒNational Center for Biotechnology InformationïŒ
ZFINïŒZebrafish Information NetworkïŒ
Ensembl
UCSC Genome Browser
UniProt
KEGG
ãããŒã«ã
ZENBU å šéšïŒçååŠç ç©¶æïŒïŒè³æïŒ
ãåèWebãµã€ãã
æ¥æ¬ãã€ãªã€ã³ãã©ããã£ã¯ã¹åŠäŒ Japanese Society for Bioinformatics â JSBi
ãPythonã§çç©DNAïŒã²ãã ïŒåæãããŠã¿ãããBioPythonå
¥éãã
ãçç©åŠã®ç¬åŠã»å匷ãµã€ã | Biologyã
Views: 494


